Unit 1 Lesson 2 Function Notation Worksheet Day 2

1. While shopping online, you decide to buy your friend a present. The website charges a fee of $4.50 plus an extra 65 cents per ounce that the order weighs.

 a) Write a function where \(x \) = the number of ounces and \(f(x) \) = the total cost of the order.

 \[
 f(x) = 4.50 + 0.65x
 \]

 b) What is \(f(5) \) and what does it mean in the context of the problem?

 \$7.75, it costs \$7.75 to ship a 5 ounce order.

 c) If \(f(x) = \frac{11}{2} \), then what is \(x \)? and what does it mean in the context of the problem?

 10 ounces, 10 ounces costs \$11 to ship.

2. The graph of \(S(t) \) below can be used to model the score that a student generally receives on a test, based on the number of hours that they study. The test being described is out of 20 points (meaning that 20 would be a perfect score).

 a) What is \(S(0) \) and what does it mean in the context of the problem?

 5, if you spend 0 hours studying,
you will score 5 out of 20.

 b) What is \(S(2) \) and what does it mean in the context of the problem?

 8, if you spend 2 hours studying,
you will score 8 out of 20.

 c) What is \(S(3) \) and what does it mean in the context of the problem?

 12, if you spend 3 hours studying,
you will score 12 out of 20.

 d) How many hours of studying are generally necessary to achieve a perfect score?

 4 hours.

3. \(h(x) = 4x - 7 \)

 Evaluate \(h(x + 2) \).

4. \(f(x) = \frac{1}{2}x + 6 \) and \(g(x) = x^3 + 100 \)

 Evaluate \(f(2) + g(1) \).
5. The fee for the airport parking is shown. Evaluate.
 a. Evaluate \(c(0.5) = \frac{4}{3} \).

 What does \(c(0.5) \) mean in terms of parking and fee?

 It will cost $4 to park for 30 minutes.

 b. Evaluate \(c(8) = \frac{80}{3} \).

 c. Find the missing input for \(c(_____) = 12 \).

 d. What does \(c(24) = 20 \) mean in terms of parking and fee?

 To park for 24 hours (1 day) it is a maximum of $20.

6. An old cell phone plan used to charge $30 for the first 500 minutes and $0.02 for each additional minute.

 Function Rule: \(C(M) = 0.02(M - 500) + 30 \)

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>750</td>
<td>$35</td>
</tr>
<tr>
<td>1000</td>
<td>40</td>
</tr>
<tr>
<td>4000</td>
<td>100</td>
</tr>
</tbody>
</table>

 a. What is the input in context?

 Number of minutes

 b. What does \(C(m) \) stand for?

 The cost per month of the cell phone plan.

 c. How is the \((m - 500)\) related to the scenario?

 The number of minutes after 500

 d. What is \(C(750) \)?

 $35

 e. Draw a star on the graph that shows how \(C(500) \) is related to the table.

 f. Find \(m \) if \(C(m) = 100 \). Draw a dot on the graph to show how \(C(m) = 100 \) is shown graphically.

 4000 minutes

7. The chart shows the number of pieces of candy in a bowl over a few days. The function for the number of pieces of candy in terms of the day is shown below. What does each component mean in context?

<table>
<thead>
<tr>
<th>day</th>
<th>pieces of candy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
</tr>
</tbody>
</table>

\[C(d) = 2000 \left(\frac{1}{2} \right)^d \]